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Exercise 9.3 (Change in Volatility caused by Change of Numéraire)

(i) Let f(x, y) = x
y

such that the non-zero derivatives are

∂f

∂x
=

1

y
,

∂f

∂y
= − x

y2
,

∂2f

∂y2
=

2x

y3
,

∂2f

∂x∂y
= − 1

y2
.

The differential of S(N)(t) = f(S(t), N(t)) is then given by

d
(
S(N)(t)

)
=

1

N(t)
dS(t)− S(t)

N2(t)
dN(t)− 1

N2(t)
dS(t)dN(t)− S(t)

N3(t)
(dN(t))2

= σS(N)dW̃1(t)− νS(N)dW̃3(t)− σνρS(N)dt+ ν2S(N)dt

d
(
S(N)(t)

)
S(N)

=
(
ν2 − σνρ

)
dt+ σdW̃1(t)− νdW̃3(t).

We now want to check if it is possible to find a γ ∈ R such that γW̃4(t) = σW̃1(t)−

νW̃3(t) and W̃4(t) is a Brownian motion. We first note that σW̃1(t) − νW̃3(t) is a

continuous martingale, starting at zero in t = 0 and has zero expected value. Its

quadratic variation is

(
σdW̃1(t)− νdW̃3(t)

)2
= (σ2 + ν2 − 2σνρ)dt.
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Now let

γ =
1√

σ2dt− 2σνρdt+ ν2

and define

W̃4(t) =
σdW̃1(t)− νdW̃3(t)√
σ2dt− 2σνρdt+ ν2

.

Note that dW̃4(t)dW̃4(t) = dt and by Lévy’s theorem W̃4(t) is a Brownian motion.

We can write
d
(
S(N)(t)

)
S(N)(t)

= (ν2 − σνρ)dt+ γdW̃4(t).

(ii) In order for W̃2(t) to be a Brownian motion, we require
(
dW̃2(t)

)2
= dt. Our second

condition is dW̃1(t)dW̃2(t) = 0, which comes from the independence of W̃1(t) and

W̃2(t). We search for a, b ∈ R such that

W̃2(t) = aW̃1(t) + bW̃3(t)

and both conditions are fulfilled. We start by calculating the cross variation between

W̃1(t) and W̃2(t)

dW̃1(t)dW̃2(t) = (a+ bρ) dt.

This term is zero if a = −bρ. The quadratic variation of W̃2(t) is

(
dW̃2(t)

)2
=
(
a2 + 2abρ+ b2

)
dt.

Using a2 + 2abρ+ b2 = 1 and a = −bρ we get

b = ± 1√
1− ρ2

, a = ∓ ρ√
1− ρ2

.

It follows that

W̃2(t) = ∓ ρ√
1− ρ2

W̃1(t)±
1√

1− ρ2
W̃3(t).
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Note that both solutions are equivalent due to the symmetry of the Brownian mo-

tion. We thus only consider the first one in the following. Solving for W̃3(t) and

substituting into the SDE for N(t) yields

dN(t) = rN(t)dt+ νN(t)
[
ρdW̃1(t) +

√
1− ρ2dW̃2(t)

]
(q.e.d)

(iii) Using the result from part (ii), the differentials of the discounted asset prices can be

written as

d (D(t)S(t)) = D(t)S(t)σdW̃1(t)

d (D(t)N(t)) = D(t)N(t)
[
νρdW̃1(t) + ν

√
1− ρ2dW̃2(t)

]
.

The volatility vectors are given by

σ =

 σ

0

 , ν =

 νρ

ν
√

1− ρ2

 .
By Theorem 9.2.2, the volatility under the numeraire measure becomes

 v1

v2

 =

 σ − νρ

−ν
√

1− ρ2


and we have

√
v21 + v22 =

√
σ2 − 2σνρ+ ν2 (q.e.d.)

Exercise 9.5 (Quanto Option)

We first give a general solution to the problem in exercise (i) and (ii), i.e. finding the

solution to a (multidimensional) geometric Brownian motion. Let S(t) be an asset as

defined in the mutlidimensional market model in Equation (5.4.2), i.e.

dS(t) = α(t)S(t)dt+ S(t)
d∑

j=1

σj(t)dWj(t).
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Now let f(t, x) = lnx. We have

∂f

∂t
= 0,

∂f

∂x
=

1

x

∂2f

∂x2
= − 1

x2
.

Since the Brownian motions are assumed to be independent, we have dWj(t)dWk(t) =

0 for j 6= k and thus

(dS(t))2 = S2(t)
d∑

j=1

σ2
j (t)dt = ‖σ(t)‖2 dt.

Applying Itô’s lemma yields the differential of the logarithmic asset price as

d lnS(t) =
1

S(t)
dS(t)− 1

2

1

S2(t)
(dS(t))2

=

(
α(t)− 1

2
‖σ(t)‖2

)
dt+

d∑
j=1

σj(t)dWj(t).

We integrate to obtain

lnS(t) = lnS(o) +

∫ t

0

(
α(s)− 1

2
‖σ(s)‖2

)
ds+

∫ t

0

d∑
j=1

σj(s)dWj(s).

Finally, taking the exponential yields

S(t) = S(0) exp

{∫ t

0

(
α(s)− 1

2
‖σ(s)‖2

)
ds+

∫ t

0

d∑
j=1

σj(s)dWj(s)

}
.

and in case of constant drift and diffusion coefficients α(t) = α and σ(t) = σ, we get

S(t) = S(0) exp

{(
α− 1

2
‖σ‖2

)
t+

d∑
j=1

σjWj(t)

}
.

(i) We have α(t) = r, σ(t) = σ1. By the previous analyses, S(t) is given by

S(t) = S(0) exp

{(
r − 1

2
σ2
1

)
t+ σ1dW̃1(t)

}
. (q.e.d.)

(ii) We have α(t) = r − rf , σ(t) =
(
ρσ2

√
1− ρ2σ2

)T
. Since ‖σ(t)‖2 = σ2

2ρ
2 +

σ2
2 (1− ρ2) = σ2

2, we obtain

Q(t) = Q(0) exp

{(
r − rf − 1

2
σ2
2

)
t+ ρσ2W̃1(t) +

√
1− ρ2σ2W̃2(t)

}
. (q.e.d.)
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(iii) We have

S(t)

Q(t)
=
S(0)

Q(0)

{(
rf − 1

2
σ2
1 +

1

2
σ2
2

)
t+ (σ1 − ρσ2) W̃1(t)−

√
1− ρ2σ2W̃2(t)

}
.

We want to find a σ4 such that W̃4(t) is a Brownian motion and

σ4W̃4(t) = (σ1 − ρσ2) W̃1(t)−
√

1− ρ2σ2W̃2(t).

By Lévy’s theorem, W̃4(t) is a Brownian motion if it is a continuous martingale

starting a W̃4(0) = 0 and with unit quadratic variation. The continuity, martingale

and initial value properties directly follows from the definition of W̃4(t) as the sum

of two Brownian motions. The quadratic variation is

dW̃4(t)dW̃4(t) =
(σ1 − ρσ2)2 − (1− ρ2)σ2

2

σ2
4

dt =
σ2
1 − 2ρσ1σ2 + σ2

2

σ2
4

dt.

We thus set σ4 =
√
σ2
1 − 2ρσ1σ2 + σ2

2 such that W̃4(t) is a P̃ Brownian motion.

Substituting in the formula for the currency converted spot price yields

S(t)

Q(t)
=

S(0)

Q(0)

{(
rf − 1

2
σ2
1 +

1

2
σ2
2 +

1

2
σ2
4 −

1

2
σ2
4

)
t+ σ4dW̃4(t)

}
=

S(0)

Q(0)

{(
rf − ρσ1σ2 + σ2

2 −
1

2
σ2
4

)
t+ σ4dW̃4(t)

}
=

S(0)

Q(0)

{(
r − a− 1

2
σ2
4

)
t+ σ4dW̃4(t)

}
.

In the last step, we defined a = r − rf + ρσ1σ2 − σ2
2.

(iv) It follows that the problem of pricing a quanto call option is equivalent to the one of

pricing a plain vanilla call option when the underlying pays a continuous dividend

yield of a. The solution for this case is given in Section 5.5.2 in Equations (5.5.11)

and (5.5.12) and is not repeated here.
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