Stochastic Calculus for Finance II

some Solutions to Chapter IX

Matthias Thul*

Last Update: June 19, 2015

Exercise 9.3 (Change in Volatility caused by Change of Numéraire)

(i) Let $f(x, y)=\frac{x}{y}$ such that the non-zero derivatives are

$$
\frac{\partial f}{\partial x}=\frac{1}{y}, \quad \frac{\partial f}{\partial y}=-\frac{x}{y^{2}}, \quad \frac{\partial^{2} f}{\partial y^{2}}=\frac{2 x}{y^{3}}, \quad \frac{\partial^{2} f}{\partial x \partial y}=-\frac{1}{y^{2}} .
$$

The differential of $S^{(N)}(t)=f(S(t), N(t))$ is then given by

$$
\begin{aligned}
d\left(S^{(N)}(t)\right) & =\frac{1}{N(t)} d S(t)-\frac{S(t)}{N^{2}(t)} d N(t)-\frac{1}{N^{2}(t)} d S(t) d N(t)-\frac{S(t)}{N^{3}(t)}(d N(t))^{2} \\
& =\sigma S^{(N)} d \tilde{W}_{1}(t)-\nu S^{(N)} d \tilde{W}_{3}(t)-\sigma \nu \rho S^{(N)} d t+\nu^{2} S^{(N)} d t \\
\frac{d\left(S^{(N)}(t)\right)}{S^{(N)}} & =\left(\nu^{2}-\sigma \nu \rho\right) d t+\sigma d \tilde{W}_{1}(t)-\nu d \tilde{W}_{3}(t) .
\end{aligned}
$$

We now want to check if it is possible to find a $\gamma \in \mathbb{R}$ such that $\gamma \tilde{W}_{4}(t)=\sigma \tilde{W}_{1}(t)-$ $\nu \tilde{W}_{3}(t)$ and $\tilde{W}_{4}(t)$ is a Brownian motion. We first note that $\sigma \tilde{W}_{1}(t)-\nu \tilde{W}_{3}(t)$ is a continuous martingale, starting at zero in $t=0$ and has zero expected value. Its quadratic variation is

$$
\left(\sigma d \tilde{W}_{1}(t)-\nu d \tilde{W}_{3}(t)\right)^{2}=\left(\sigma^{2}+\nu^{2}-2 \sigma \nu \rho\right) d t
$$

[^0]Now let

$$
\gamma=\frac{1}{\sqrt{\sigma^{2} d t-2 \sigma \nu \rho d t+\nu^{2}}}
$$

and define

$$
\tilde{W}_{4}(t)=\frac{\sigma d \tilde{W}_{1}(t)-\nu d \tilde{W}_{3}(t)}{\sqrt{\sigma^{2} d t-2 \sigma \nu \rho d t+\nu^{2}}} .
$$

Note that $d \tilde{W}_{4}(t) d \tilde{W}_{4}(t)=d t$ and by Lévy's theorem $\tilde{W}_{4}(t)$ is a Brownian motion.
We can write

$$
\frac{d\left(S^{(N)}(t)\right)}{S^{(N)}(t)}=\left(\nu^{2}-\sigma \nu \rho\right) d t+\gamma d \tilde{W}_{4}(t)
$$

(ii) In order for $\tilde{W}_{2}(t)$ to be a Brownian motion, we require $\left(d \tilde{W}_{2}(t)\right)^{2}=d t$. Our second condition is $d \tilde{W}_{1}(t) d \tilde{W}_{2}(t)=0$, which comes from the independence of $\tilde{W}_{1}(t)$ and $\tilde{W}_{2}(t)$. We search for $a, b \in \mathbb{R}$ such that

$$
\tilde{W}_{2}(t)=a \tilde{W}_{1}(t)+b \tilde{W}_{3}(t)
$$

and both conditions are fulfilled. We start by calculating the cross variation between $\tilde{W}_{1}(t)$ and $\tilde{W}_{2}(t)$

$$
d \tilde{W}_{1}(t) d \tilde{W}_{2}(t)=(a+b \rho) d t
$$

This term is zero if $a=-b \rho$. The quadratic variation of $\tilde{W}_{2}(t)$ is

$$
\left(d \tilde{W}_{2}(t)\right)^{2}=\left(a^{2}+2 a b \rho+b^{2}\right) d t
$$

Using $a^{2}+2 a b \rho+b^{2}=1$ and $a=-b \rho$ we get

$$
b= \pm \frac{1}{\sqrt{1-\rho^{2}}}, \quad a=\mp \frac{\rho}{\sqrt{1-\rho^{2}}} .
$$

It follows that

$$
\tilde{W}_{2}(t)=\mp \frac{\rho}{\sqrt{1-\rho^{2}}} \tilde{W}_{1}(t) \pm \frac{1}{\sqrt{1-\rho^{2}}} \tilde{W}_{3}(t) .
$$

Note that both solutions are equivalent due to the symmetry of the Brownian motion. We thus only consider the first one in the following. Solving for $\tilde{W}_{3}(t)$ and substituting into the SDE for $N(t)$ yields

$$
d N(t)=r N(t) d t+\nu N(t)\left[\rho d \tilde{W}_{1}(t)+\sqrt{1-\rho^{2}} d \tilde{W}_{2}(t)\right] \quad \text { (q.e.d) }
$$

(iii) Using the result from part (ii), the differentials of the discounted asset prices can be written as

$$
\begin{aligned}
d(D(t) S(t)) & =D(t) S(t) \sigma d \tilde{W}_{1}(t) \\
d(D(t) N(t)) & =D(t) N(t)\left[\nu \rho d \tilde{W}_{1}(t)+\nu \sqrt{1-\rho^{2}} d \tilde{W}_{2}(t)\right]
\end{aligned}
$$

The volatility vectors are given by

$$
\sigma=\left[\begin{array}{l}
\sigma \\
0
\end{array}\right], \quad \nu=\left[\begin{array}{c}
\nu \rho \\
\nu \sqrt{1-\rho^{2}}
\end{array}\right] .
$$

By Theorem 9.2.2, the volatility under the numeraire measure becomes

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
\sigma-\nu \rho \\
-\nu \sqrt{1-\rho^{2}}
\end{array}\right]
$$

and we have

$$
\sqrt{v_{1}^{2}+v_{2}^{2}}=\sqrt{\sigma^{2}-2 \sigma \nu \rho+\nu^{2}} \quad \text { (q.e.d.) }
$$

Exercise 9.5 (Quanto Option)

We first give a general solution to the problem in exercise (i) and (ii), i.e. finding the solution to a (multidimensional) geometric Brownian motion. Let $S(t)$ be an asset as defined in the mutlidimensional market model in Equation (5.4.2), i.e.

$$
d S(t)=\alpha(t) S(t) d t+S(t) \sum_{j=1}^{d} \sigma_{j}(t) d W_{j}(t)
$$

Now let $f(t, x)=\ln x$. We have

$$
\frac{\partial f}{\partial t}=0, \quad \frac{\partial f}{\partial x}=\frac{1}{x} \quad \frac{\partial^{2} f}{\partial x^{2}}=-\frac{1}{x^{2}} .
$$

Since the Brownian motions are assumed to be independent, we have $d W_{j}(t) d W_{k}(t)=$ 0 for $j \neq k$ and thus

$$
(d S(t))^{2}=S^{2}(t) \sum_{j=1}^{d} \sigma_{j}^{2}(t) d t=\|\sigma(t)\|^{2} d t .
$$

Applying Itô's lemma yields the differential of the logarithmic asset price as

$$
\begin{aligned}
d \ln S(t) & =\frac{1}{S(t)} d S(t)-\frac{1}{2} \frac{1}{S^{2}(t)}(d S(t))^{2} \\
& =\left(\alpha(t)-\frac{1}{2}\|\sigma(t)\|^{2}\right) d t+\sum_{j=1}^{d} \sigma_{j}(t) d W_{j}(t)
\end{aligned}
$$

We integrate to obtain

$$
\ln S(t)=\ln S(o)+\int_{0}^{t}\left(\alpha(s)-\frac{1}{2}\|\sigma(s)\|^{2}\right) d s+\int_{0}^{t} \sum_{j=1}^{d} \sigma_{j}(s) d W_{j}(s) .
$$

Finally, taking the exponential yields

$$
S(t)=S(0) \exp \left\{\int_{0}^{t}\left(\alpha(s)-\frac{1}{2}\|\sigma(s)\|^{2}\right) d s+\int_{0}^{t} \sum_{j=1}^{d} \sigma_{j}(s) d W_{j}(s)\right\} .
$$

and in case of constant drift and diffusion coefficients $\alpha(t)=\alpha$ and $\sigma(t)=\sigma$, we get

$$
S(t)=S(0) \exp \left\{\left(\alpha-\frac{1}{2}\|\sigma\|^{2}\right) t+\sum_{j=1}^{d} \sigma_{j} W_{j}(t)\right\} .
$$

(i) We have $\alpha(t)=r, \sigma(t)=\sigma_{1}$. By the previous analyses, $S(t)$ is given by

$$
S(t)=S(0) \exp \left\{\left(r-\frac{1}{2} \sigma_{1}^{2}\right) t+\sigma_{1} d \tilde{W}_{1}(t)\right\} . \quad \text { (q.e.d.) }
$$

(ii) We have $\alpha(t)=r-r^{f}, \sigma(t)=\left(\begin{array}{ll}\rho \sigma_{2} & \sqrt{1-\rho^{2}} \sigma_{2}\end{array}\right)^{T}$. Since $\|\sigma(t)\|^{2}=\sigma_{2}^{2} \rho^{2}+$ $\sigma_{2}^{2}\left(1-\rho^{2}\right)=\sigma_{2}^{2}$, we obtain

$$
\begin{equation*}
Q(t)=Q(0) \exp \left\{\left(r-r^{f}-\frac{1}{2} \sigma_{2}^{2}\right) t+\rho \sigma_{2} \tilde{W}_{1}(t)+\sqrt{1-\rho^{2}} \sigma_{2} \tilde{W}_{2}(t)\right\} . \tag{q.e.d.}
\end{equation*}
$$

(iii) We have

$$
\frac{S(t)}{Q(t)}=\frac{S(0)}{Q(0)}\left\{\left(r^{f}-\frac{1}{2} \sigma_{1}^{2}+\frac{1}{2} \sigma_{2}^{2}\right) t+\left(\sigma_{1}-\rho \sigma_{2}\right) \tilde{W}_{1}(t)-\sqrt{1-\rho^{2}} \sigma_{2} \tilde{W}_{2}(t)\right\}
$$

We want to find a σ_{4} such that $\tilde{W}_{4}(t)$ is a Brownian motion and

$$
\sigma_{4} \tilde{W}_{4}(t)=\left(\sigma_{1}-\rho \sigma_{2}\right) \tilde{W}_{1}(t)-\sqrt{1-\rho^{2}} \sigma_{2} \tilde{W}_{2}(t)
$$

By Lévy's theorem, $\tilde{W}_{4}(t)$ is a Brownian motion if it is a continuous martingale starting a $\tilde{W}_{4}(0)=0$ and with unit quadratic variation. The continuity, martingale and initial value properties directly follows from the definition of $\tilde{W}_{4}(t)$ as the sum of two Brownian motions. The quadratic variation is

$$
d \tilde{W}_{4}(t) d \tilde{W}_{4}(t)=\frac{\left(\sigma_{1}-\rho \sigma_{2}\right)^{2}-\left(1-\rho^{2}\right) \sigma_{2}^{2}}{\sigma_{4}^{2}} d t=\frac{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}}{\sigma_{4}^{2}} d t
$$

We thus set $\sigma_{4}=\sqrt{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}}$ such that $\tilde{W}_{4}(t)$ is a $\tilde{\mathbb{P}}$ Brownian motion. Substituting in the formula for the currency converted spot price yields

$$
\begin{aligned}
\frac{S(t)}{Q(t)} & =\frac{S(0)}{Q(0)}\left\{\left(r^{f}-\frac{1}{2} \sigma_{1}^{2}+\frac{1}{2} \sigma_{2}^{2}+\frac{1}{2} \sigma_{4}^{2}-\frac{1}{2} \sigma_{4}^{2}\right) t+\sigma_{4} d \tilde{W}_{4}(t)\right\} \\
& =\frac{S(0)}{Q(0)}\left\{\left(r^{f}-\rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}-\frac{1}{2} \sigma_{4}^{2}\right) t+\sigma_{4} d \tilde{W}_{4}(t)\right\} \\
& =\frac{S(0)}{Q(0)}\left\{\left(r-a-\frac{1}{2} \sigma_{4}^{2}\right) t+\sigma_{4} d \tilde{W}_{4}(t)\right\} .
\end{aligned}
$$

In the last step, we defined $a=r-r^{f}+\rho \sigma_{1} \sigma_{2}-\sigma_{2}^{2}$.
(iv) It follows that the problem of pricing a quanto call option is equivalent to the one of pricing a plain vanilla call option when the underlying pays a continuous dividend yield of a. The solution for this case is given in Section 5.5.2 in Equations (5.5.11) and (5.5.12) and is not repeated here.

[^0]: *The author can be contacted via <<firstname>>.<<lastname>>@gmail.com and http://www.matthiasthul.com.

